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Decision Tree 

• A decision tree is a flowchart-like structure in 
which  
– each internal node represents a "test" on an 

attribute 

– each branch represents the outcome of the test 

– each leaf node represents a class label (decision 
taken after computing all attributes).  

• The paths from root to leaf represent 
classification rules. 
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Introduction: Decision Tree Learning 

• Decision tree learning is a method for 
approximating discrete-valued target 
functions, in which the learned function is 
represented by a decision tree.  
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• Learned trees can also be re-represented as 
sets of if-then rules to improve human 
readability. 
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• These learning methods are among the most popular 
of inductive inference algorithms  

• have been successfully applied to a broad range of 
tasks from learning to diagnose medical cases to 
learning to assess credit risk of loan applicants. 

Tejaswini H, Assistant Professor, 
Department of Computer Science 



• It is a method for approximating discrete-valued 
functions that is robust to noisy data and capable 
of learning disjunctive expressions.  

• widely used algorithms are ID3, ASSISTANT, and 
C4.5 

• These decision tree learning methods search a 
completely expressive hypothesis space and thus 
avoid the difficulties of restricted hypothesis 
spaces.  

• Their inductive bias is a preference for small trees 
over large trees. 

Tejaswini H, Assistant Professor, 
Department of Computer Science 



DECISION TREE REPRESENTATION 

• classifies instances by sorting them down the 
tree from the root to some leaf node, which 
provides the classification of the instance.  

• Each node in the tree specifies a test of some 
attribute of the instance 

• branch descending from that node 
corresponds to one of the possible values for 
this attribute 
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• An instance is classified by  

– starting at the root node of the tree,  

– testing the attribute specified by this node,  

– then moving down the tree branch corresponding 
to the value of the attribute in the given example.  

• This process is then repeated for the subtree 
rooted at the new node. 
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• In general, decision trees represent a 
disjunction of conjunctions of constraints on 
the attribute values of instances.  

• Each path from the tree root to a leaf 
corresponds to a conjunction of attribute 
tests, and the tree itself to a disjunction of 
these conjunctions. 
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(Outlook = Sunny ^ Humidity = Normal) 

V (Outlook = Overcast) 

v (Outlook = Rain ^ Wind = Weak) 

Tejaswini H, Assistant Professor, 
Department of Computer Science 



decision tree learning is generally 
best suited to problems with the following 
characteristics: 

1. Instances are represented by attribute-value 
pairs. 

– Instances are described by a fixed set of attributes 
and their values. 

– Attribute can take 

• on a small number of disjoint possible values 

•  real-values 
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2. The target function has discrete output 
values.  

– The decision tree generally assigns a boolean 
classification (e.g., yes or no) to each example.  

– Can have more than two possible output values 

– Also real-valued outputs ( though the application 
of decision trees in this setting is less common) 
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3. Disjunctive descriptions may be required. 

– As noted above, decision trees naturally represent 
disjunctive expressions. 

4. The training data may contain errors. 

– Decision tree learning methods are robust to 
errors, both errors in classifications of the training 
examples and errors in the attribute values that 
describe these examples. 
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5. The training data may contain missing 
attribute values 

– Decision tree methods can be used even when 
some training examples have unknown values 

– (e.g., if the Humidity of the day is known for only 
some of the training examples) 
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• classification problems: 
– Problems in which the task is to classify examples into 

one of a discrete set of possible categories, are often 
referred to as classification problems. 

• Decision tree learning has therefore been applied 
to problems such as  
– learning medical patients by their disease 

– equipment malfunctions by their cause  

– loan applicants by their likelihood of defaulting on 
payments 
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THE BASIC DECISION TREE LEARNING 
ALGORITHM 

• ID3 algorithm 

– Iterative Dichotomiser 3 

– algorithm invented by Ross Quinlan 
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Training examples for the target concept PlayTennis 
Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
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• ID3 algorithm learns decision trees by constructing 
them top-down, beginning with the question "which 
attribute should be tested at the root of the tree?‘ 

– To answer this question, each instance attribute is 
evaluated using a statistical test to determine how well it 
alone classifies the training examples. 

• The best attribute is selected and used as the test at 
the root node of the tree. 
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• A descendant of the root node is then created for each 
possible value of this attribute, and the training 
examples are sorted to the appropriate descendant 
node. 

• The entire process is then repeated using the training 
examples associated with each descendant node to 
select the best attribute to test at that point in the 
tree. 

• This forms a greedy search for an acceptable decision 
tree, in which the algorithm never backtracks to 
reconsider earlier choices. 
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Which Attribute Is the Best Classifier? 

• The central choice in the ID3 algorithm is 
selecting which attribute to test at each node 
in the tree.  

• We would like to select the attribute that is 
most useful for classifying examples. 
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• ENTROPY: MEASURES HOMOGENEITY OF EXAMPLES 

• INFORMATION GAIN: MEASURES THE EXPECTED 
REDUCTION IN ENTROPY 
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ENTROPY 

• Entropy: characterizes the (im)purity of an 
arbitrary collection of examples. 

• Given a collection S, containing positive and 
negative examples of some target concept, 
the entropy of S relative to this boolean 
classification is: 
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• Where  

• p+ : is the proportion of positive examples in S  
p- : is the proportion of negative examples in S  

• In all calculations involving entropy we define 
0 log 0 to be 0. 
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• Notice that the entropy is 0 if all members of S 
belong to the same class.  

• For example,  

– if all members are positive ( p+ = 1 ), then p- is 0 

– Entropy(S)  

= -1 . log2(1) - 0 . log20  

= -1 . 0 - 0 . log20  

= 0  
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• Entropy is 1 

– If the collection contains an equal number of 
positive and negative examples. 

• Entropy is between 0 and 1  

– If the collection contains unequal numbers of 
positive and negative examples. 

• Entropy is 0 

– If the examples belongs to same class. 
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• pi is the proportion of S belonging to class i 
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• Let’s define a statistical property, called 
information gain, that measures how well a 
given attribute separates the training 
examples according to their target 
classification.  

• ID3 uses this information gain measure to 
select among the candidate attributes at each 
step while growing the tree. 
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INFORMATION GAIN 

• measures the effectiveness of an attribute in 
classifying the training data.  

• information gain is the expected reduction in 
entropy caused by partitioning the examples 
according to this attribute. 
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• S: collection of examples 

• Values(A): set of all possible values for attribute A 

• Sv:  subset of S for which attribute A has value v i.e.,  
 Sv = {s ϵ S | A(s) = v } 

• Entropy(S) : entropy of the original collection S 

• second term: the expected value of the entropy after 
S is partitioned  using attribute A.  

• The expected entropy is the sum of the entropies of 
each subset Sv  weighted by the fraction of examples 
|Sv|/|S| that belong to Sv 
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• Gain(S, A) is therefore the expected reduction 
in entropy caused by knowing the value of 
attribute A.  

• Put another way, Gain(S, A) is the information 
provided about the target &action value, 
given the value of some other attribute A. 
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Training examples for the target concept PlayTennis 
Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
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Consider:  

• S: collection of training example  

• Days are described by attributes 

– Outlook 

– Temperature 

– Humidity  

– Wind 

• Target attribute: PlayTennis 
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Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
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• Now, |S| = 14 (number of training example) 

• Of these 14 examples, 

– 9 are positive (i.e. with target value Yes) 

– 5 are negative (i.e with target value No) 

 

So,  

S = [9+, 5-] 
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Entropy 

• Entropy(S) = -p+log2p+   -  p- log2p- 
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• S = [9+, 5-]                      

• |S| = 14 

• pyes  = (9/14)                    (probability that target value is yes) 

• pno  =  (5/14)            (probability that target value is no) 
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Entropy(S)      =  - pyes log2pyes   -  pno log2pno 

Entropy([9+, 5-])    =  - (9/14) log2(9/14)   -  (5/14) log2 (5/14) 

       =  0.940 

 

So, Inititally,  

S= [9+, 5-]  and  

E = 0.940 
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Information Gain 

Gain(S, A) =  

Entropy(S) - Σ V ϵ Values(A) ( |Sv| / |S| ) Entropy(Sv) 
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1.1: Attribute A = Wind 

• Consider attribute Wind 

• Value(wind) =  {weak, strong} 
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Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
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• |Swind=weak | = 8 

o Yes = 6 

o No = 2 

o Swind=weak    [6+, 2-] 

• |Swind=strong | = 6 

o Yes = 3 

o No = 3 

o Swind=strong    [3+, 3-] 
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• Entropy(Swind=weak)   

 =  Entropy(  [6+, 2-] ) 

 =  - (6/8) log2 (6/8)   -  (2/8) log2 (2/8) 

 =  0.81125 

• Entropy(Swind=strong)   

 =  Entropy([3+, 3-]) 

 =  - (3/6) log2 (3/6)   -  (3/6) log2 (3/6) 

 =  1 
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Gain(S, Wind)   

=Entropy(S) –  

[ ( |Swind=weak| / |S| ) Entropy(Swind=weak)  +   

( |Swind=strong| / |S| ) Entropy(Swind=strong) ] 

 

= 0.940 - [ ( 8 / 14 ) * 0.811 +    ( 6 / 14 ) * 1] 

= 0.048 
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1.2: Attribute A = Outlook 

• Consider attribute Outlook 

• Value(outlook) =  {sunny, rain, overcast} 
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Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
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• |Soutlook=sunny | = 5 
o Yes = 2 

o No = 3 

o Soutlook=sunny    [2+, 3-] 

• |Soutlook=overcast | = 4 
o Yes = 4 

o No = 0 

o Soutlook=overcast    [4+, 0-] 

• |Soutlook=rain | = 5 
o Yes = 3 

o No = 2 

o Soutlook=rain    [3+, 2-] 
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• Entropy(Soutlook=sunny)   

 =  Entropy([2+, 3-]) 

 =   - (2/5) log2 (2/5)   - (3/5) log2 (3/5) 

 =   0.9696 

• Entropy(Soutlook=overcast)  =  0  

    (all belongs to class yes) 

• Entropy(Soutlook=rain)    

 =  Entropy([3+, 2-]) 

 =   - (3/5) log2 (3/5)   - (2/5) log2 (2/5) 

 =   0.9696 
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Gain(S, Outlook)    

=  Entropy(S) –  

[ ( | Soutlook=sunny | / |S| ) Entropy(Soutlook=sunny)  +   

  ( | Soutlook=overcast | / |S| ) Entropy(Soutlook=overcast) + 
  ( | Soutlook=rain | / |S| ) Entropy(Soutlook=rain)  ] 

= 0.940 - [ ( 5 / 14 ) * 0.9696 + (4/14) * 0 + (5/14)* 
                      0.9696] 

= 0.2471 
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1.3: Attribute A = Temperature 

• Consider attribute Temperature 

• Value(Temperature) =  {hot, cool, mild} 
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Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
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• |Stemperature=hot | = 4 
o Yes = 2 

o No = 2 

o Stemperature=hot    [2+, 2-] 

• |Stemperature=cool | = 4 
o Yes = 3 

o No = 1 

o Stemperature=cool    [3+, 1-] 

• |Stemperature=mild | = 6 
o Yes = 4 

o No = 2 

o Stemperature=mild    [4+, 2-] 
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•  Entropy(Stemperature=hot)    
 =  Entropy([2+, 2-]) 
 =   - (2/4) log2 (2/4)   - (2/4) log2 (2/4) 

 =   1 

• Entropy(Stemperature=cool)    
 =  Entropy([3+, 1-]) 
 =   - (3/4) log2 (3/4)   - (1/4) log2 (1/4) 
 =   0.81125 
• Entropy(Stemperature=mild)    

 =  Entropy([4+, 2-]) 

 =   - (4/6) log2 (4/6)   - (2/6) log2 (2/6) 
 =   0.9164 
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Gain(S, Temperature)    

=  Entropy(S) –  

[ ( | Stemperature=hot | / |S| ) Entropy(Stemperature=hot)  +   

   ( | Stemperature=cool | / |S| ) Entropy(Stemperature=cool) + 
  ( | Stemperature=mild | / |S| ) Entropy(Stemperature=mild)  ] 

 = 0.940 - [ ( 4 / 14 ) * 1 + (4/14) * 0.81125 +  
     (6/14)* 0.9164] 

= 0.029 
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1.4: Attribute A = Humidity 

• Consider attribute Humidity 

• Value(humidity)= {normal, high} 
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Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
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• | Shumidity=normal | = 7 

o Yes = 6 

o No = 1 

o Shumidity=normal    [6+, 1-] 

• | Shumidity=high | = 7 

o Yes = 3 

o No = 4 

o Shumidity=high    [3+, 4-] 
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• Entropy(Shumidity=normal)   

 =  Entropy([6+, 1-]) 

 =   - (6/7) log2 (6/7)   -  (1/7) log2 (1/7) 

 =   0.5888 

• Entropy(Shumidity=high)    

 =  Entropy([3+, 4-]) 

 =   - (3/7) log2 (3/7)   -  (4/7) log2 (4/7) 

 =   0.9849 
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Gain(S, Humidity)   

=  Entropy(S) –  

[ ( | Shumidity=normal | / |S| ) Entropy(Shumidity=normal)  +   

         ( | Shumidity=high | / |S| ) Entropy(Shumidity=high) ] 

= 0.940 - [ ( 7 / 14 ) * 0.5888 +    ( 7 / 14 ) * 0.9849] 

= 0.153 
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• Gain(S, Wind) = 0.048               (1.1) 

• Gain(S, Outlook) = 0.246          (1.2) 

• Gain(S, Temperature) = 0.029  (1.3) 

• Gain(S, Humidity) = 0.153         (1.4) 

 

 

• Outlook attribute is having the highest gain. 
So it becomes root node 
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• Note: For Soutlook=overcast  all the records are 
associated with class label as Yes.   

• So leaf node is created for Outlook = Overcast 
with class label =  Yes. 
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Records associated with Outlook = Sunny 

Soutlook=sunny = {D1 , D2, D8, D9, D11} 

Records associated with Outlook = Overcast 

Soutlook=overcast = {D3, D7, D12, D13} 

Records associated with Outlook = Rain 

Soutlook=rain = {D4, D5, D6, D10, D14} 
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Records associated with Outlook = Sunny 
Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
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Records associated with Outlook = Rain  
Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 

Tejaswini H, Assistant Professor, Department of Computer Science 



Records associated with Outlook = Overcast 
Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 

Tejaswini H, Assistant Professor, Department of Computer Science 



• Remaining attributes are: Humidity ,Wind 
Temperature 

• Now test Ssunny with respect to above three 
attributes. Later Srain with the remaining 
attributes. Note: no need to test Sovercast as all 
the records associated with has class label as 
Yes.   

• Now calculate:  

– Gain(Soutlook=sunny, Humidity) 

– Gain(Soutlook=sunny, Wind) 

– Gain(Soutlook=sunny, Temperature) 
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Outlook becomes root node. 



• Remaining attributes are: 
– Humidity  

– Wind 

– Temperature 

• Now test Soutlook=sunny with respect to above three 
attributes. 

• Later Soutlook=rain with the remaining attributes. 

• Note: no need to test Soutlook=overcast as all the 
records associated with it has class label as Yes. 
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• Now calculate: 

– Gain(Soutlook=sunny, Humidity)      (2.1) 

– Gain(Soutlook=sunny, Temperature) (2.2)  

– Gain(Soutlook=sunny, Wind)             (2.3) 
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Records associated with Outlook = Sunny 
Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 
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2.1 To compute Gain (Soutlook=sunny, Humidity) 

 

Records associated with Outlook = Sunny  

Ssunny = {D1 , D2, D8, D9, D11} 
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• Lets add attribute Humidity 
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Records associated with Outlook = Sunny and 
Attribute A =  Humidity 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 
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Outlook = Sunny 
and Attribute = Humidity 

• Values (Humidity) = {Normal, High} 

• Gain(Soutlook=sunny, Humidity) 

• |Soutlook=sunny|= 5 
– Ssunny  [2+, 3-]                    

• Values(Humidity) = {Normal, High} 

• |Shumidity=normal|= 2 
– Shumidity=normal  [2+, 0-] 

• |Shumidity=high|= 3 
– Shumidity=high  [0+, 3-] 
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• Entropy(Shumidity=normal)  =  0 

• Entropy(Shumidity=high)   =  0 
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• Gain(Soutlook=sunny, Humidity) =   

Entropy(Soutlook=sunny) –  

[ ( | Shumidity=normal | / | Soutlook=sunny | )Entropy(Shumidity=normal)  
+ ( | Shumidity=high | / | Soutlook=sunny | ) Entropy(Shumidity=high) ] 

 = 0.9696 - [ ( 2 / 5 ) * 0 +    ( 3 / 5 ) * 0] 

 = 0.9696 
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2.2 To compute Gain (Soutlook=sunny , Temperature) 
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Records associated with Outlook = Sunny and 
Attribute A =  Temperature 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 
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Outlook = Sunny and   
Attribute A = Temperature 

• Values (Temperature) = {Hot, Mild, Cold } 
• |Soutlook=sunny|= 5 
• Soutlook=sunny  [2+, 3-]                    
• Entropy(Soutlook=sunny) = 0.9696 
• |Stemperature=hot|= 2 

– Stemperature=hot  [0+, 2-] 

• |Stemperature=mild|= 2 
– Stemperature=mild  [1+, 1-] 

• |Stemperature=cold|= 1 
– Stemperature=cold  [1+, 0-] 
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• Entropy(Stemperature=hot)  =  0  (all negative) 

• Entropy(Stemperature=mild)  =  1   (equal) 

• Entropy(Stemperature=cold)  =  0  (all positive) 
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• Gain(Soutlook=sunny, Temperature) =   

Entropy(Soutlook=sunny) –  

[ ( | Stemperature=hot | / | Soutlook=sunny | )  Entropy(Stemperature=hot)  + 

   ( | Stemperature=mild | / | Soutlook=sunny | ) Entropy(Stemperature=mild)+   

   ( | Stemperature=cold | / | Soutlook=sunny | )  Entropy(Stemperature=cold)] 

= 0.9696 - [ ( 2 / 5 ) * 0 +    ( 2 / 5 ) * 1 + ( 1 / 5 ) * 0] 

= 0.5696 
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2.3 To compute Gain (Soutlook=sunny, Wind) 
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Records associated with Outlook = Sunny and 
Attribute A =  Wind 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 
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Outlook = Sunny and   
Attribute A = Wind 

• Values (Wind) = {weak, strong} 

• |Soutlook=sunny|= 5 

• Soutlook=sunny  [2+, 3-]                    

• Entropy(Soutlook=sunny) = 0.9696 

• |Swind=weak|= 3 
– Swind=weak  [1+, 2-] 

• |Swind=strong|= 2 
– Swind=strong  [1+, 1-] 
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• Entropy(Swind=weak)   

  =  Entropy([1+, 2-]) 

  =   - (1/3) log2 (1/3)   -  (2/3) log2 (2/3) 

  =   0.9164 

• Entropy(Swind=strong)  =  1   (equal) 
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• Gain(Soutlook=sunny, Wind) =   

Entropy(Soutlook=sunny) –  

[ ( | Swind=weak | / | Soutlook=sunny | )  Entropy(Swind=weak)  +  

   ( | Swind=strong | / | Soutlook=sunny | ) Entropy(Swind=strong) ] 

= 0.9696 - [ ( 3 / 5 ) * 0.9164 +    ( 2 / 5 ) * 1] 

= 0.01976 
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• So, 

• Gain(Soutlook=sunny, Humidity)  = 0.9696 

• Gain(Soutlook=sunny, Wind)   = 0.570 

• Gain(Soutlook=sunny, Temperature) = 0.019 
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• The attribute Humidity has the highest gain. So 
attach it as a child node for Outlook=Sunny. 

• For Outlook=Sunny and Humidity = Normal all 
the records belongs to label = yes, so attach it 
as leaf node for Humidity = Normal 

• For Outlook=Sunny and Humidity = High all the 
records belongs to label = No, so attach it as leaf 
node for Humidity = High 
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• Remaining attributes are:   Wind, Temperature 

• Now test Srain with respect to above two 
attributes. 

 

• Now calculate: 

– Gain(Srain, Temperature)         (3.1) 

– Gain(Srain, Wind)                      (3.2)  

– Gain(Srain, Humidity)                      (3.3)  
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• Records associated with Outlook = Rain is     
Srain = {D4, D5, D6, D10, D14} 
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3.1 To compute Gain(Soutlook=rain, Temperature)  
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Records associated with Outlook = Rain and Attribute 
A =  Temperature 

Day Outlook Temperature Humidity Wind PlayTennis 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D10 Rain Mild Normal Weak Yes 

D14 Rain Mild High Strong No 
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Outlook = Rain and   
Attribute A = Temperature. 

• Values (Temperature) = {Hot, Mild, Cold } 
• | Soutlook=rain |= 5 
• Soutlook=rain  [3+, 2-]                    
• Entropy(Soutlook=rain) = 0.9696 
• |Stemperature=hot|= 0 

– Stemperature=hot  [0+, 0-] 

• |Stemperature=mild|= 3 
– Stemperature=mild  [2+, 1-] 

• |Stemperature=cold|= 2 
– Stemperature=cold  [1+, 1-] 
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• Entropy(Stemperature=hot)  =  0  (all negative) 

• Entropy(Stemperature=mild)   

  =  Entropy([2+, 1-]) 

  =   - (2/3) log2 (2/3)   -  (1/3) log2 (1/3) 

  =   0.9164 

• Entropy(Stemperature=cold)  =  1  (equal) 
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• Gain(Soutlook=rain, Temperature) =   

Entropy(Soutlook=rain) –  

[ ( | Stemperature=hot | / | Soutlook=rain | )  Entropy(Stemperature=hot)  +     

   ( | Stemperature=mild | / | Soutlook=rain | ) Entropy(Stemperature=mild)  +   

   ( | Stemperature=cold | / | Soutlook=rain | )  Entropy(Stemperature=cold)] 

= 0.9696 - [ ( 0 / 5 ) * 0 +    ( 3 / 5 ) * 0.9164 + ( 2 / 5 ) * 1] 

= 0.01976 
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3.2 To compute Gain(Soutlook=rain, Wind)  
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Records associated with Outlook = Rain and Attribute 
A =  Wind 

Day Outlook Temperature Humidity Wind PlayTennis 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D10 Rain Mild Normal Weak Yes 

D14 Rain Mild High Strong No 
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Outlook = Rain and   
Attribute A = Wind 

• Values (Wind) = {weak, strong} 

• | Soutlook=rain |= 5 

• Soutlook=rain  [2+, 3-]                    

• Entropy(Soutlook=rain) = 0.9696 

• |Swind=weak|= 3 
– Swind=weak  [3+, 0-] 

• |Swind=strong|= 2 
– Swind=strong  [0+, 2-] 
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• Entropy(Swind=weak)  =  0  (all yes) 

• Entropy(Swind=strong)  =  0   (all no) 
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• Gain(Soutlook=rain, Wind) =   

Entropy(Soutlook=rain) –  

[ ( | Swind=weak | / | Soutlook=rain | )  Entropy(Swind=weak)  +                 
( | Swind=strong | / | Soutlook=rain | ) Entropy(Swind=strong) ] 

    = 0.9696 - [ ( 3 / 5 ) * 0 +    ( 2 / 5 ) * 0] 

    = 0.9696 
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3.3 To compute Gain(Soutlook=rain, Humidity)  
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Records associated with Outlook = Rain and Attribute 
A =  Humidity 

Day Outlook Temperature Humidity Wind PlayTennis 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D10 Rain Mild Normal Weak Yes 

D14 Rain Mild High Strong No 
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Outlook = Rain and   
Attribute A = Humidity 

• Values (Humidity) = {high, normal} 

• | Soutlook=rain |= 5 

• Soutlook=rain  [2+, 3-]                    

• Entropy(Soutlook=rain) = 0.9696 

• |Shumidity=high|= 2 
– Shumidity=high  [1+, 1-] 

• |Shumidity=normal|= 3 
– Shumidity=normal  [2+, 1-] 
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• Entropy(Shumidity=high)  =  1   

• Entropy(Shumidity=normal)  

  =  Entropy([2+, 1-]) 

  =   - (2/3) log2 (2/3)   -  (1/3) log2 (1/3) 

  =   0.9164 
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• Gain(Soutlook=rain, Humidity) =   

Entropy(Soutlook=rain) –  

[ ( | Shumidity=normal | / | Soutlook=rain | )  Entropy(Shumidity=normal )  
+( | Shumidity=high | / | Soutlook=rain | ) Entropy(Shumidity=high ) ] 

    = 0.9696 - [ ( 3 / 5 ) * 0.9164 +    ( 2 / 5 ) * 1] 

    = 0.01976 
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• So,  

• Gain(Soutlook=rain, Wind)   = 0.9696 

• Gain(Soutlook=rain, Temperature) = 0.01976 

• Gain(Soutlook=rain, Humidity) = 0.01976 
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• The attribute Wind has the highest gain. So 
attach it as a child node for Outlook=Rain. 

• For Outlook= Rain and Wind = Strong all the 
records belongs to class label = No, so attach 
it as leaf node for Wind = Strong 

• For Outlook= Rain and Wind = Weak all the 
records belongs to class label = Yes, so attach 
it as leaf node for Wind = Weak 
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So, a final decision tree is: 
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• The process of selecting a new attribute and 
partitioning the training examples is now 
repeated for each nonterminal descendant 
node, this time using only the training 
examples associated with that node.  

• Attributes that have been incorporated higher 
in the tree are excluded, so that any given 
attribute can appear at most once along any 
path through the tree.  
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• This process continues for each new leaf node 
until either of two conditions is met:  

– every attribute has already been included along 
this path through the tree, or  

– the training examples associated with this leaf 
node all have the same target attribute value (i.e., 
their entropy is zero). 
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3.5 HYPOTHESIS SPACE SEARCH IN  
DECISION TREE LEARNING 

• As with other inductive learning methods, ID3 
can be characterized as searching a space of 
hypotheses for one that fits the training 
examples.  

• The hypothesis space searched by ID3 is the 
set of possible decision trees. 
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• ID3 performs a simple-to complex, hill-
climbing search through this hypothesis space, 
beginning with the empty tree, then 
considering progressively more elaborate 
hypotheses in search of a decision tree that 
correctly classifies the training data. 
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• The evaluation function that guides this hill-
climbing search is the information gain 
measure. 
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Insights into ID3:  
capabilities and limitations 

• ID3's hypothesis space of all decision trees is a 
complete space of finite discrete-valued 
functions, relative to the available attributes.  
– Because every finite discrete-valued function can 

be represented by some decision tree, ID3 avoids 
one of the major risks of methods that search 
incomplete hypothesis spaces (such as methods 
that consider only conjunctive  hypotheses): that 
the hypothesis space might not contain the target 
function. 
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• ID3 maintains only a single current hypothesis as it 
searches through the space of decision trees. 
– This contrasts, for example, with the earlier version space 

candidate-elimination, which maintains the set of all 
hypotheses consistent with the available training 
examples.  

– By determining only a single hypothesis, ID3 loses the 
capabilities that follow from explicitly representing all 
consistent hypotheses. For example, it does not have the 
ability to determine how many alternative decision trees 
are consistent with the available training data, or to pose 
new instance queries that optimally resolve among these 
competing hypotheses. 
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• ID3 in its pure form performs no backtracking in its 
search. 
– Once it, selects an attribute to test at a particular level in 

the tree, it never backtracks to reconsider this choice.  
– Therefore, it is susceptible to the usual risks of hill-climbing 

search without backtracking: converging to locally optimal 
solutions that are not globally optimal.  

– In the case of ID3, a locally optimal solution corresponds to 
the decision tree it selects along the single search path it 
explores. 

– However, this locally optimal solution may be less 
desirable than trees that would have been encountered 
along a different branch of the search. 
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• ID3 uses all training examples at each step in the search to 
make statistically based decisions regarding how to refine 
its current hypothesis. 

• This contrasts with methods that make decisions 
incrementally, based on individual training examples (e.g., 
FIND-S or CANDIDATE-ELIMINATION ). One advantage of 
using statistical properties of all the examples (e.g., 
information gain) is that the resulting search is much less 
sensitive to errors in individual training examples.  

• ID3 can be easily extended to handle noisy training data by  
modifying its termination criterion to accept hypotheses 
that imperfectly fit the training data. 
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ISSUES IN DECISION TREE LEARNING 

1. Avoiding Overfitting the Data 
 REDUCED ERROR PRUNING 

 RULE POST-PRUNING 

2. Incorporating Continuous-Valued Attributes 

3. Alternative Measures for Selecting 
Attributes 

4. Handling Training Examples with Missing 
Attribute Values 

5. Handling Attributes with Differing Costs 
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1. Avoiding Overfitting the Data 

• The algorithm grows each branch of the tree just 
deeply enough to perfectly classify the training 
examples.  

• While this is sometimes a reasonable strategy, in 
fact it can lead to difficulties when  
– there is noise in the data, 
– or when the number of training examples is too small 

to produce a representative sample of the true target 
function.  

• In either of these cases, this simple algorithm can 
produce trees that overfit the training examples. 
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• We will say that a hypothesis overfits the 
training examples if some other hypothesis 
that fits the training examples less well 
actually performs better over the entire 
distribution of instances (i.e., including 
instances beyond the training set). 
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• Figure 3.6 illustrates the impact of overfitting in a typical 
application of decision tree learning.  

• In this case, the ID3 algorithm is applied to the task of 
learning which medical patients have a form of diabetes.  

• The horizontal axis of this plot indicates the total number of 
nodes in the decision tree, as the tree is being constructed. 

• The vertical axis indicates the accuracy of predictions made 
by the tree. 

• The solid line shows the accuracy of the decision tree over 
the training examples, whereas the broken line shows 
accuracy measured over an independent set of test 
examples (not included in the training set). 
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• Predictably, the accuracy of the tree over the 
training examples increases monotonically as the 
tree is grown.  

• However, the accuracy measured over the 
independent test examples first increases, then 
decreases.  

• As can be seen, once the tree size exceeds 
approximately 25 nodes, further elaboration of 
the tree decreases its accuracy over the test 
examples despite increasing its accuracy on the 
training examples. 

Tejaswini H, Assistant Professor, 
Department of Computer Science 



• How can it be possible for tree h to fit the training 
examples better than h', but for it to perform 
more poorly over subsequent examples?  

• One way this can occur is when the training 
examples contain random errors or noise.  

• To illustrate, consider the effect of adding the 
following positive training example, incorrectly 
labeled as negative, to the (otherwise correct) 
examples in Table 
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• Given the original error-free data, ID3 produces the 
decision tree shown in Figure 3.1.  

• However, the addition of this incorrect example will 
now cause ID3 to construct a more complex tree.  

• In particular, the new example will be sorted into the 
second leaf node from the left in the learned tree of 
Figure 3.1, along with the previous positive examples 
D9 and D11.  

• Because the new example is labeled as a negative 
example, ID3 will search for further refinements to the 
tree below this node. 
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• Of course as long as the new erroneous example differs in 
some arbitrary way from the other examples affiliated with 
this node, ID3 will succeed in finding a new decision 
attribute to separate out this new example from the two 
previous positive examples at this tree node.  

• The result is that ID3 will output a decision tree (h) that is 
more complex than the original tree from Figure 3.1 (h').  

• Of course h will fit the collection of training examples 
perfectly, whereas the simpler h' will not.  

• However, given that the new decision node is simply a 
consequence of fitting the noisy training example, we 
expect h to outperform h' over subsequent data drawn 
from the same instance distribution. 
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• The above example illustrates how random noise in the 
training examples can lead to overfitting.  

• In fact, overfitting is possible even when the training 
data are noise-free, especially when small numbers of 
examples are associated with leaf nodes.  

• In this case, it is quite possible for coincidental 
regularities to occur, in which some attribute happens 
to partition the examples very well, despite being 
unrelated to the actual target function.  

• Whenever such coincidental regularities exist, there is 
a risk of overfitting. 
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• There are several approaches to avoiding 
overfitting in decision tree learning.These can 
be grouped into two classes: 

– approaches that stop growing the tree earlier, 
before it reaches the point where it perfectly 
classifies the training data, 

– approaches that allow the tree to overfit the data, 
and then post-prune the tree. 
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• a key question is what criterion is to be used to 
determine the correct final tree size. Approaches 
include:  
– Use a separate set of examples, distinct from the training 

examples, to evaluate the utility of post-pruning nodes 
from the tree. 

– Use all the available data for training, but apply a statistical 
test to estimate whether expanding (or pruning) a 
particular node is likely to produce an improvement 
beyond the training set. (Chi-square test) 

– Use an explicit measure of the complexity for encoding the 
training examples and the decision tree, halting growth of 
the tree when this encoding size is minimized. (Minimum 
Description Length methoid) 
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• The first of the above approaches is the most common and is 
referred to as a training and validation set approach. Two main 
variants: 

• In this approach, the available data are separated into two sets of 
examples: a training set, which is used to form the learned 
hypothesis, and a separate validation set, which is used to evaluate 
the accuracy of this hypothesis over subsequent data and, in 
particular, to evaluate the impact of pruning this hypothesis.  

Tejaswini H, Assistant Professor, 
Department of Computer Science 



• The motivation is this: Even though the learner may be 
misled by random errors and coincidental regularities 
within the training set, the validation set is unlikely to 
exhibit the same random fluctuations.  

• Therefore, the validation set can be expected to provide a 
safety check against overfitting the spurious characteristics 
of the training set. 

• Of course, it is important that the validation set be large 
enough to itself provide a statistically significant sample of 
the instances.  

• One common heuristic is to withhold one-third of the 
available examples for the validation set, using the other 
two-thirds for training.  
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REDUCED ERROR PRUNING 

• How exactly might we use a validation set to 
prevent overfitting?  

• One approach, called reduced-error pruning 
(Quinlan 1987), is to consider each of the 
decision nodes in the tree to be candidates for 
pruning.  

• Pruning a decision node consists of removing the 
subtree rooted at that node, making it a leaf 
node, and assigning it the most common 
classification of the training examples affiliated 
with that node. 
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• Nodes are removed only if the resulting pruned tree 
performs no worse than-the original over the validation set. 

• This has the effect that any leaf node added due to 
coincidental regularities in the training set is likely to be 
pruned because these same coincidences are unlikely to 
occur in the validation set.  

• Nodes are pruned iteratively, always choosing the node 
whose removal most increases the decision tree accuracy 
over the validation set.  

• Pruning of nodes continues until further pruning is harmful 
(i.e., decreases accuracy of the tree over the validation set). 

Tejaswini H, Assistant Professor, 
Department of Computer Science 



RULE POST-PRUNING 

• In practice, one quite successful method for finding 
high accuracy hypotheses is a technique we shall call 
rule post-pruning.  

• A variant of this pruning method is used by C4.5 
(Quinlan 1993), which is an outgrowth of the original 
ID3 algorithm. 
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• Rule post-pruning involves the following steps: 

– 1. Infer the decision tree from the training set, growing the 
tree until the training data is fit as well as possible and 
allowing overfitting to occur. 

– 2. Convert the learned tree into an equivalent set of rules 
by creating one rule for each path from the root node to a 
leaf node. 

– 3. Prune (generalize) each rule by removing any 
preconditions that result in improving its estimated 
accuracy. 

– 4. Sort the pruned rules by their estimated accuracy, and 
consider them in this sequence when classifying 
subsequent instances. 
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• To illustrate, consider again the decision tree 
in Figure 3.1.  

• In rule postpruning, one rule is generated for 
each leaf node in the tree.  

• Each attribute test along the path from the 
root to the leaf becomes a rule antecedent 
(precondition)  

• and the classification at the leaf node 
becomes the rule consequent (postcondition). 
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• For example, the leftmost path of the tree in 
Figure 3.1 is translated into the rule 
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• Next, each such rule is pruned by removing any 
antecedent, or precondition, whose removal does not 
worsen its estimated accuracy.  

• Given the above rule, for example, rule post-pruning 
would consider removing the preconditions (Outlook = 
Sunny) and (Humidity = High).  

• It would select whichever of these pruning steps 
produced the greatest improvement in estimated rule 
accuracy, then consider pruning the second 
precondition as a further pruning step.  

• No pruning step is performed if it reduces the 
estimated rule accuracy 

Tejaswini H, Assistant Professor, 
Department of Computer Science 



Why convert the decision tree to rules 
before pruning? 

• There are three main advantages. 
• Converting to rules allows distinguishing among the different 

contexts in which a decision node is used. Because each distinct 
path through the decision tree node produces a distinct rule, the 
pruning decision regarding that attribute test can be made 
differently for each path. In contrast, if the tree itself were pruned, 
the only two choices would be to remove the decision node 
completely, or to retain it in its original form. 

• Converting to rules removes the distinction between attribute tests 
that occur near the root of the tree and those that occur near the 
leaves. Thus, we avoid messy bookkeeping issues such as how to 
reorganize the tree if the root node is pruned while retaining part of 
the subtree below this test.  

• Converting to rules improves readability. Rules are often easier for 
to understand. 
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2. Incorporating Continuous-Valued 
Attributes 

• Our initial definition of ID3 is restricted to 
attributes that take on a discrete set of values.  

• First, the target attribute whose value is 
predicted by the learned tree must be discrete 
valued.  

• Second, the attributes tested in the decision 
nodes of the tree must also be discrete valued.  

• This second restriction can easily be removed so 
that continuous-valued decision attributes can be 
incorporated into the learned tree.  
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• This can be accomplished by dynamically defining 
new discrete-valued attributes that partition the 
continuous attribute value into a discrete set of 
intervals.  

• In particular, for an attribute A that is continuous- 
valued, the algorithm can dynamically create a 
new boolean attribute Ac, that is true if A < c and 
false otherwise.  

• The only question is how to select the best value 
for the threshold c. 
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3. Alternative Measures for  
Selecting Attributes 

• Attribute Date has so many possible values that it 
is bound to separate the training examples into 
very  small subsets. 

• Because of this, it will have a very high 
information gain relative to the training 
examples, despite being a very poor predictor of 
the target function over unseen instances. 

• One way to avoid this difficulty is to select  
decision attributes based on some measure other 
than information gain. 
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• One alternative measure that has been used 
successfully is the gain ratio. 

• The gain ratio measure penalizes attributes 
such as Date by incorporating a term, called 
split information, that is sensitive to how 
broadly and uniformly the attribute splits the 
data: 
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where S1 through Sc, are the c subsets of examples resulting 
from partitioning S by the c-valued attribute A. 



• The Gain Ratio measure is defined in terms of 
the earlier Gain measure, as well as this Split 
information, as follows 
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4. Handling Training Examples with 
Missing Attribute Values 

• In certain cases, the available data may be 
missing values for some attributes. 

• For example, in a medical domain in which we 
wish to predict patient outcome based on various 
laboratory tests, it may be that the lab test Blood-
Test-Result is available only for a subset of the 
patients.  

• In such cases, it is common to estimate the 
missing attribute value based on other examples 
for which this attribute has a known value. 
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• Consider the situation in which Gain(S, A) is to 
be calculated at node n in the decision tree to 
evaluate whether the attribute A is the best 
attribute to test at this decision node. 

• Suppose that (x, c(x)) is one of the training 
examples in S and that the value A(x) is 
unknown. 
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• One strategy for dealing with the missing 
attribute value is to assign it the value that is 
most common among training examples at 
node n.  

• Alternatively, we might assign it the most 
common value among examples at node n 
that have the classification c(x) 
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5. Handling Attributes with  
Differing Costs 

• In some learning tasks the instance attributes may have 
associated costs.  

• For example, in learning to classify medical diseases we 
might describe patients in terms of attributes such as 
Temperature, BiopsyResult, Pulse, BloodTestResults, 
etc.  

• These attributes vary significantly in their costs, both in  
terms of monetary cost and cost to patient comfort.  

• In such tasks, we would prefer decision trees that use 
low-cost attributes where possible, relying on high-cost 
attributes only when needed to produce reliable 
classifications. 
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• ID3 can be modified to take into account 
attribute costs by introducing a cost term into 
the attribute selection measure.  

• For example, we might divide the Gain by the 
cost of the attribute, so that lower-cost 
attributes would be preferred. 
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INDUCTIVE BIAS in  
DECISION TREE LEARNING 

• inductive bias: 

– the set of assumptions that, together with the 
training data, deductively justify the classifications 
assigned by the learner to future instances. 
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• For a given collection of training examples, 
there are many decision trees consistent with 
these examples. 

• ID3 search strategy selects 

– (a) in favor of shorter trees over longer ones, and 

– (b)trees that place the attributes with highest 
information gain closest to the root. 
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• Approximate inductive bias of ID3:  

– Shorter trees are preferred over larger trees. 
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• A closer approximation to the inductive bias 
of ID3:  

– Shorter trees are preferred over longer trees. 
Trees that place high information gain attributes 
close to the root are preferred over those that do 
not. 
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Restriction Biases and  
Preference Biases: 

ID3 v/s Candidate-Elimination 
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ID3 

• ID3 searches a complete hypothesis space.  

• It searches incompletely through this space, 
from simple to complex hypotheses, until its 
termination condition is met.  

• Its inductive bias is solely a consequence of 
the ordering of hypotheses by its search 
strategy.  

• Its hypothesis space introduces no additional 
bias. 
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Candidate-Elimination 

• The version space CANDIDATE-ELIMINATION 
algorithm searches an incomplete  hypothesis 
space.  

• It searches this space completely, finding every 
hypothesis consistent with the training data.  

• Its inductive bias is solely a consequence of the 
expressive power of its hypothesis 
representation.  

• Its search strategy introduces no additional bias. 
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• In brief, the inductive bias of ID3 follows from 
its search strategy,  

• whereas the inductive bias of the C-E follows 
from the definition of its search space. 
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• The inductive bias of ID3 is thus a preference 
for certain hypotheses over others (e.g., for 
shorter hypotheses), with no hard restriction 
on the hypotheses that can be eventually 
enumerated.  

• This form of bias is typically called a  
preference bias (or, alternatively, a search 
bias). 
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• In contrast, the bias of the C-E is in the form of 
a categorical restriction on the set of 
hypotheses considered.  

• This form of bias is typically called a 
restriction bias (or, alternatively, a language 
bias). 
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• Typically, a preference bias is more desirable than 
a restriction bias, because it allows the learner to 
work within a complete hypothesis space that is 
assured to contain the unknown target function. 

• In contrast, a restriction bias that strictly limits 
the set of potential hypotheses is generally less 
desirable, because it introduces the possibility of 
excluding the unknown target function altogether 
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Why Prefer Short Hypotheses? 
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• Occam's razor: Prefer the simplest hypothesis 
that fits the data. 
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