
Module 2
Decision Tree Learning

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

Decision Tree

• A decision tree is a flowchart-like structure in
which
– each internal node represents a "test" on an

attribute

– each branch represents the outcome of the test

– each leaf node represents a class label (decision
taken after computing all attributes).

• The paths from root to leaf represent
classification rules.

Tejaswini H, Assistant Professor,
Department of Computer Science

Introduction: Decision Tree Learning

• Decision tree learning is a method for
approximating discrete-valued target
functions, in which the learned function is
represented by a decision tree.

Tejaswini H, Assistant Professor,
Department of Computer Science

• Learned trees can also be re-represented as
sets of if-then rules to improve human
readability.

Tejaswini H, Assistant Professor,
Department of Computer Science

• These learning methods are among the most popular
of inductive inference algorithms

• have been successfully applied to a broad range of
tasks from learning to diagnose medical cases to
learning to assess credit risk of loan applicants.

Tejaswini H, Assistant Professor,
Department of Computer Science

• It is a method for approximating discrete-valued
functions that is robust to noisy data and capable
of learning disjunctive expressions.

• widely used algorithms are ID3, ASSISTANT, and
C4.5

• These decision tree learning methods search a
completely expressive hypothesis space and thus
avoid the difficulties of restricted hypothesis
spaces.

• Their inductive bias is a preference for small trees
over large trees.

Tejaswini H, Assistant Professor,
Department of Computer Science

DECISION TREE REPRESENTATION

• classifies instances by sorting them down the
tree from the root to some leaf node, which
provides the classification of the instance.

• Each node in the tree specifies a test of some
attribute of the instance

• branch descending from that node
corresponds to one of the possible values for
this attribute

Tejaswini H, Assistant Professor,
Department of Computer Science

• An instance is classified by

– starting at the root node of the tree,

– testing the attribute specified by this node,

– then moving down the tree branch corresponding
to the value of the attribute in the given example.

• This process is then repeated for the subtree
rooted at the new node.

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

• In general, decision trees represent a
disjunction of conjunctions of constraints on
the attribute values of instances.

• Each path from the tree root to a leaf
corresponds to a conjunction of attribute
tests, and the tree itself to a disjunction of
these conjunctions.

Tejaswini H, Assistant Professor,
Department of Computer Science

(Outlook = Sunny ^ Humidity = Normal)

V (Outlook = Overcast)

v (Outlook = Rain ^ Wind = Weak)

Tejaswini H, Assistant Professor,
Department of Computer Science

decision tree learning is generally
best suited to problems with the following
characteristics:

1. Instances are represented by attribute-value
pairs.

– Instances are described by a fixed set of attributes
and their values.

– Attribute can take

• on a small number of disjoint possible values

• real-values

Tejaswini H, Assistant Professor,
Department of Computer Science

2. The target function has discrete output
values.

– The decision tree generally assigns a boolean
classification (e.g., yes or no) to each example.

– Can have more than two possible output values

– Also real-valued outputs (though the application
of decision trees in this setting is less common)

Tejaswini H, Assistant Professor,
Department of Computer Science

3. Disjunctive descriptions may be required.

– As noted above, decision trees naturally represent
disjunctive expressions.

4. The training data may contain errors.

– Decision tree learning methods are robust to
errors, both errors in classifications of the training
examples and errors in the attribute values that
describe these examples.

Tejaswini H, Assistant Professor,
Department of Computer Science

5. The training data may contain missing
attribute values

– Decision tree methods can be used even when
some training examples have unknown values

– (e.g., if the Humidity of the day is known for only
some of the training examples)

Tejaswini H, Assistant Professor,
Department of Computer Science

• classification problems:
– Problems in which the task is to classify examples into

one of a discrete set of possible categories, are often
referred to as classification problems.

• Decision tree learning has therefore been applied
to problems such as
– learning medical patients by their disease

– equipment malfunctions by their cause

– loan applicants by their likelihood of defaulting on
payments

Tejaswini H, Assistant Professor,
Department of Computer Science

THE BASIC DECISION TREE LEARNING
ALGORITHM

• ID3 algorithm

– Iterative Dichotomiser 3

– algorithm invented by Ross Quinlan

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

Training examples for the target concept PlayTennis
Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

• ID3 algorithm learns decision trees by constructing
them top-down, beginning with the question "which
attribute should be tested at the root of the tree?‘

– To answer this question, each instance attribute is
evaluated using a statistical test to determine how well it
alone classifies the training examples.

• The best attribute is selected and used as the test at
the root node of the tree.

Tejaswini H, Assistant Professor,
Department of Computer Science

• A descendant of the root node is then created for each
possible value of this attribute, and the training
examples are sorted to the appropriate descendant
node.

• The entire process is then repeated using the training
examples associated with each descendant node to
select the best attribute to test at that point in the
tree.

• This forms a greedy search for an acceptable decision
tree, in which the algorithm never backtracks to
reconsider earlier choices.

Tejaswini H, Assistant Professor,
Department of Computer Science

Which Attribute Is the Best Classifier?

• The central choice in the ID3 algorithm is
selecting which attribute to test at each node
in the tree.

• We would like to select the attribute that is
most useful for classifying examples.

Tejaswini H, Assistant Professor,
Department of Computer Science

• ENTROPY: MEASURES HOMOGENEITY OF EXAMPLES

• INFORMATION GAIN: MEASURES THE EXPECTED
REDUCTION IN ENTROPY

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

ENTROPY

• Entropy: characterizes the (im)purity of an
arbitrary collection of examples.

• Given a collection S, containing positive and
negative examples of some target concept,
the entropy of S relative to this boolean
classification is:

Tejaswini H, Assistant Professor,
Department of Computer Science

• Where

• p+ : is the proportion of positive examples in S
p- : is the proportion of negative examples in S

• In all calculations involving entropy we define
0 log 0 to be 0.

Tejaswini H, Assistant Professor,
Department of Computer Science

• Notice that the entropy is 0 if all members of S
belong to the same class.

• For example,

– if all members are positive (p+ = 1), then p- is 0

– Entropy(S)

= -1 . log2(1) - 0 . log20

= -1 . 0 - 0 . log20

= 0

Tejaswini H, Assistant Professor,
Department of Computer Science

• Entropy is 1

– If the collection contains an equal number of
positive and negative examples.

• Entropy is between 0 and 1

– If the collection contains unequal numbers of
positive and negative examples.

• Entropy is 0

– If the examples belongs to same class.

Tejaswini H, Assistant Professor,

Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

• pi is the proportion of S belonging to class i

Tejaswini H, Assistant Professor,
Department of Computer Science

• Let’s define a statistical property, called
information gain, that measures how well a
given attribute separates the training
examples according to their target
classification.

• ID3 uses this information gain measure to
select among the candidate attributes at each
step while growing the tree.

Tejaswini H, Assistant Professor,
Department of Computer Science

INFORMATION GAIN

• measures the effectiveness of an attribute in
classifying the training data.

• information gain is the expected reduction in
entropy caused by partitioning the examples
according to this attribute.

Tejaswini H, Assistant Professor,
Department of Computer Science

• S: collection of examples

• Values(A): set of all possible values for attribute A

• Sv: subset of S for which attribute A has value v i.e.,
 Sv = {s ϵ S | A(s) = v }

• Entropy(S) : entropy of the original collection S

• second term: the expected value of the entropy after
S is partitioned using attribute A.

• The expected entropy is the sum of the entropies of
each subset Sv weighted by the fraction of examples
|Sv|/|S| that belong to Sv

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

• Gain(S, A) is therefore the expected reduction
in entropy caused by knowing the value of
attribute A.

• Put another way, Gain(S, A) is the information
provided about the target &action value,
given the value of some other attribute A.

Tejaswini H, Assistant Professor,
Department of Computer Science

Training examples for the target concept PlayTennis
Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

Consider:

• S: collection of training example

• Days are described by attributes

– Outlook

– Temperature

– Humidity

– Wind

• Target attribute: PlayTennis

Tejaswini H, Assistant Professor, Department of Computer Science

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

• Now, |S| = 14 (number of training example)

• Of these 14 examples,

– 9 are positive (i.e. with target value Yes)

– 5 are negative (i.e with target value No)

So,

S = [9+, 5-]

Tejaswini H, Assistant Professor,
Department of Computer Science

Entropy

• Entropy(S) = -p+log2p+ - p- log2p-

Tejaswini H, Assistant Professor,
Department of Computer Science

• S = [9+, 5-]

• |S| = 14

• pyes = (9/14) (probability that target value is yes)

• pno = (5/14) (probability that target value is no)

Tejaswini H, Assistant Professor,
Department of Computer Science

Entropy(S) = - pyes log2pyes - pno log2pno

Entropy([9+, 5-]) = - (9/14) log2(9/14) - (5/14) log2 (5/14)

 = 0.940

So, Inititally,

S= [9+, 5-] and

E = 0.940

 Tejaswini H, Assistant Professor,
Department of Computer Science

Information Gain

Gain(S, A) =

Entropy(S) - Σ V ϵ Values(A) (|Sv| / |S|) Entropy(Sv)

Tejaswini H, Assistant Professor,
Department of Computer Science

1.1: Attribute A = Wind

• Consider attribute Wind

• Value(wind) = {weak, strong}

Tejaswini H, Assistant Professor,
Department of Computer Science

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

• |Swind=weak | = 8

o Yes = 6

o No = 2

o Swind=weak  [6+, 2-]

• |Swind=strong | = 6

o Yes = 3

o No = 3

o Swind=strong  [3+, 3-]

Tejaswini H, Assistant Professor,

Department of Computer Science

• Entropy(Swind=weak)

 = Entropy([6+, 2-])

 = - (6/8) log2 (6/8) - (2/8) log2 (2/8)

 = 0.81125

• Entropy(Swind=strong)

 = Entropy([3+, 3-])

 = - (3/6) log2 (3/6) - (3/6) log2 (3/6)

 = 1

Tejaswini H, Assistant Professor,

Department of Computer Science

Gain(S, Wind)

=Entropy(S) –

[(|Swind=weak| / |S|) Entropy(Swind=weak) +

(|Swind=strong| / |S|) Entropy(Swind=strong)]

= 0.940 - [(8 / 14) * 0.811 + (6 / 14) * 1]

= 0.048

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

1.2: Attribute A = Outlook

• Consider attribute Outlook

• Value(outlook) = {sunny, rain, overcast}

Tejaswini H, Assistant Professor,
Department of Computer Science

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

• |Soutlook=sunny | = 5
o Yes = 2

o No = 3

o Soutlook=sunny  [2+, 3-]

• |Soutlook=overcast | = 4
o Yes = 4

o No = 0

o Soutlook=overcast  [4+, 0-]

• |Soutlook=rain | = 5
o Yes = 3

o No = 2

o Soutlook=rain  [3+, 2-]

Tejaswini H, Assistant Professor,

Department of Computer Science

• Entropy(Soutlook=sunny)

 = Entropy([2+, 3-])

 = - (2/5) log2 (2/5) - (3/5) log2 (3/5)

 = 0.9696

• Entropy(Soutlook=overcast) = 0

 (all belongs to class yes)

• Entropy(Soutlook=rain)

 = Entropy([3+, 2-])

 = - (3/5) log2 (3/5) - (2/5) log2 (2/5)

 = 0.9696

Tejaswini H, Assistant Professor,

Department of Computer Science

Gain(S, Outlook)

= Entropy(S) –

[(| Soutlook=sunny | / |S|) Entropy(Soutlook=sunny) +

 (| Soutlook=overcast | / |S|) Entropy(Soutlook=overcast) +
 (| Soutlook=rain | / |S|) Entropy(Soutlook=rain)]

= 0.940 - [(5 / 14) * 0.9696 + (4/14) * 0 + (5/14)*
 0.9696]

= 0.2471

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

1.3: Attribute A = Temperature

• Consider attribute Temperature

• Value(Temperature) = {hot, cool, mild}

Tejaswini H, Assistant Professor,
Department of Computer Science

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

• |Stemperature=hot | = 4
o Yes = 2

o No = 2

o Stemperature=hot  [2+, 2-]

• |Stemperature=cool | = 4
o Yes = 3

o No = 1

o Stemperature=cool  [3+, 1-]

• |Stemperature=mild | = 6
o Yes = 4

o No = 2

o Stemperature=mild  [4+, 2-]

Tejaswini H, Assistant Professor,

Department of Computer Science

• Entropy(Stemperature=hot)
 = Entropy([2+, 2-])
 = - (2/4) log2 (2/4) - (2/4) log2 (2/4)

 = 1

• Entropy(Stemperature=cool)
 = Entropy([3+, 1-])
 = - (3/4) log2 (3/4) - (1/4) log2 (1/4)
 = 0.81125
• Entropy(Stemperature=mild)

 = Entropy([4+, 2-])

 = - (4/6) log2 (4/6) - (2/6) log2 (2/6)
 = 0.9164

Tejaswini H, Assistant Professor,

Department of Computer Science

Gain(S, Temperature)

= Entropy(S) –

[(| Stemperature=hot | / |S|) Entropy(Stemperature=hot) +

 (| Stemperature=cool | / |S|) Entropy(Stemperature=cool) +
 (| Stemperature=mild | / |S|) Entropy(Stemperature=mild)]

 = 0.940 - [(4 / 14) * 1 + (4/14) * 0.81125 +
 (6/14)* 0.9164]

= 0.029

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

1.4: Attribute A = Humidity

• Consider attribute Humidity

• Value(humidity)= {normal, high}

Tejaswini H, Assistant Professor,
Department of Computer Science

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

• | Shumidity=normal | = 7

o Yes = 6

o No = 1

o Shumidity=normal  [6+, 1-]

• | Shumidity=high | = 7

o Yes = 3

o No = 4

o Shumidity=high  [3+, 4-]

Tejaswini H, Assistant Professor,
Department of Computer Science

• Entropy(Shumidity=normal)

 = Entropy([6+, 1-])

 = - (6/7) log2 (6/7) - (1/7) log2 (1/7)

 = 0.5888

• Entropy(Shumidity=high)

 = Entropy([3+, 4-])

 = - (3/7) log2 (3/7) - (4/7) log2 (4/7)

 = 0.9849

Tejaswini H, Assistant Professor,
Department of Computer Science

Gain(S, Humidity)

= Entropy(S) –

[(| Shumidity=normal | / |S|) Entropy(Shumidity=normal) +

 (| Shumidity=high | / |S|) Entropy(Shumidity=high)]

= 0.940 - [(7 / 14) * 0.5888 + (7 / 14) * 0.9849]

= 0.153

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

• Gain(S, Wind) = 0.048 (1.1)

• Gain(S, Outlook) = 0.246 (1.2)

• Gain(S, Temperature) = 0.029 (1.3)

• Gain(S, Humidity) = 0.153 (1.4)

• Outlook attribute is having the highest gain.
So it becomes root node

Tejaswini H, Assistant Professor,

Department of Computer Science

• Note: For Soutlook=overcast all the records are
associated with class label as Yes.

• So leaf node is created for Outlook = Overcast
with class label = Yes.

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

Records associated with Outlook = Sunny

Soutlook=sunny = {D1 , D2, D8, D9, D11}

Records associated with Outlook = Overcast

Soutlook=overcast = {D3, D7, D12, D13}

Records associated with Outlook = Rain

Soutlook=rain = {D4, D5, D6, D10, D14}

Tejaswini H, Assistant Professor,

Department of Computer Science

Records associated with Outlook = Sunny
Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

Records associated with Outlook = Rain
Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

Records associated with Outlook = Overcast
Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

• Remaining attributes are: Humidity ,Wind
Temperature

• Now test Ssunny with respect to above three
attributes. Later Srain with the remaining
attributes. Note: no need to test Sovercast as all
the records associated with has class label as
Yes.

• Now calculate:

– Gain(Soutlook=sunny, Humidity)

– Gain(Soutlook=sunny, Wind)

– Gain(Soutlook=sunny, Temperature)

 Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

Outlook becomes root node.

• Remaining attributes are:
– Humidity

– Wind

– Temperature

• Now test Soutlook=sunny with respect to above three
attributes.

• Later Soutlook=rain with the remaining attributes.

• Note: no need to test Soutlook=overcast as all the
records associated with it has class label as Yes.

Tejaswini H, Assistant Professor,
Department of Computer Science

• Now calculate:

– Gain(Soutlook=sunny, Humidity) (2.1)

– Gain(Soutlook=sunny, Temperature) (2.2)

– Gain(Soutlook=sunny, Wind) (2.3)

Tejaswini H, Assistant Professor,
Department of Computer Science

Records associated with Outlook = Sunny
Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

Tejaswini H, Assistant Professor, Department of Computer Science

2.1 To compute Gain (Soutlook=sunny, Humidity)

Records associated with Outlook = Sunny

Ssunny = {D1 , D2, D8, D9, D11}

Tejaswini H, Assistant Professor,
Department of Computer Science

• Lets add attribute Humidity

Tejaswini H, Assistant Professor,
Department of Computer Science

Records associated with Outlook = Sunny and
Attribute A = Humidity

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

Tejaswini H, Assistant Professor, Department of Computer Science

Outlook = Sunny
and Attribute = Humidity

• Values (Humidity) = {Normal, High}

• Gain(Soutlook=sunny, Humidity)

• |Soutlook=sunny|= 5
– Ssunny  [2+, 3-]

• Values(Humidity) = {Normal, High}

• |Shumidity=normal|= 2
– Shumidity=normal  [2+, 0-]

• |Shumidity=high|= 3
– Shumidity=high  [0+, 3-]

 Tejaswini H, Assistant Professor,
Department of Computer Science

• Entropy(Shumidity=normal) = 0

• Entropy(Shumidity=high) = 0

Tejaswini H, Assistant Professor,
Department of Computer Science

• Gain(Soutlook=sunny, Humidity) =

Entropy(Soutlook=sunny) –

[(| Shumidity=normal | / | Soutlook=sunny |)Entropy(Shumidity=normal)
+ (| Shumidity=high | / | Soutlook=sunny |) Entropy(Shumidity=high)]

 = 0.9696 - [(2 / 5) * 0 + (3 / 5) * 0]

 = 0.9696

Tejaswini H, Assistant Professor,
Department of Computer Science

2.2 To compute Gain (Soutlook=sunny , Temperature)

Tejaswini H, Assistant Professor,
Department of Computer Science

Records associated with Outlook = Sunny and
Attribute A = Temperature

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

Tejaswini H, Assistant Professor, Department of Computer Science

Outlook = Sunny and
Attribute A = Temperature

• Values (Temperature) = {Hot, Mild, Cold }
• |Soutlook=sunny|= 5
• Soutlook=sunny  [2+, 3-]
• Entropy(Soutlook=sunny) = 0.9696
• |Stemperature=hot|= 2

– Stemperature=hot  [0+, 2-]

• |Stemperature=mild|= 2
– Stemperature=mild  [1+, 1-]

• |Stemperature=cold|= 1
– Stemperature=cold  [1+, 0-]

Tejaswini H, Assistant Professor,

Department of Computer Science

• Entropy(Stemperature=hot) = 0 (all negative)

• Entropy(Stemperature=mild) = 1 (equal)

• Entropy(Stemperature=cold) = 0 (all positive)

Tejaswini H, Assistant Professor,
Department of Computer Science

• Gain(Soutlook=sunny, Temperature) =

Entropy(Soutlook=sunny) –

[(| Stemperature=hot | / | Soutlook=sunny |) Entropy(Stemperature=hot) +

 (| Stemperature=mild | / | Soutlook=sunny |) Entropy(Stemperature=mild)+

 (| Stemperature=cold | / | Soutlook=sunny |) Entropy(Stemperature=cold)]

= 0.9696 - [(2 / 5) * 0 + (2 / 5) * 1 + (1 / 5) * 0]

= 0.5696

Tejaswini H, Assistant Professor,
Department of Computer Science

2.3 To compute Gain (Soutlook=sunny, Wind)

Tejaswini H, Assistant Professor,
Department of Computer Science

Records associated with Outlook = Sunny and
Attribute A = Wind

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

Tejaswini H, Assistant Professor, Department of Computer Science

Outlook = Sunny and
Attribute A = Wind

• Values (Wind) = {weak, strong}

• |Soutlook=sunny|= 5

• Soutlook=sunny  [2+, 3-]

• Entropy(Soutlook=sunny) = 0.9696

• |Swind=weak|= 3
– Swind=weak  [1+, 2-]

• |Swind=strong|= 2
– Swind=strong  [1+, 1-]

 Tejaswini H, Assistant Professor,
Department of Computer Science

• Entropy(Swind=weak)

 = Entropy([1+, 2-])

 = - (1/3) log2 (1/3) - (2/3) log2 (2/3)

 = 0.9164

• Entropy(Swind=strong) = 1 (equal)

Tejaswini H, Assistant Professor,
Department of Computer Science

• Gain(Soutlook=sunny, Wind) =

Entropy(Soutlook=sunny) –

[(| Swind=weak | / | Soutlook=sunny |) Entropy(Swind=weak) +

 (| Swind=strong | / | Soutlook=sunny |) Entropy(Swind=strong)]

= 0.9696 - [(3 / 5) * 0.9164 + (2 / 5) * 1]

= 0.01976

Tejaswini H, Assistant Professor,
Department of Computer Science

• So,

• Gain(Soutlook=sunny, Humidity) = 0.9696

• Gain(Soutlook=sunny, Wind) = 0.570

• Gain(Soutlook=sunny, Temperature) = 0.019

Tejaswini H, Assistant Professor,
Department of Computer Science

• The attribute Humidity has the highest gain. So
attach it as a child node for Outlook=Sunny.

• For Outlook=Sunny and Humidity = Normal all
the records belongs to label = yes, so attach it
as leaf node for Humidity = Normal

• For Outlook=Sunny and Humidity = High all the
records belongs to label = No, so attach it as leaf
node for Humidity = High

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

• Remaining attributes are: Wind, Temperature

• Now test Srain with respect to above two
attributes.

• Now calculate:

– Gain(Srain, Temperature) (3.1)

– Gain(Srain, Wind) (3.2)

– Gain(Srain, Humidity) (3.3)

Tejaswini H, Assistant Professor,
Department of Computer Science

• Records associated with Outlook = Rain is
Srain = {D4, D5, D6, D10, D14}

Tejaswini H, Assistant Professor,
Department of Computer Science

3.1 To compute Gain(Soutlook=rain, Temperature)

Tejaswini H, Assistant Professor,
Department of Computer Science

Records associated with Outlook = Rain and Attribute
A = Temperature

Day Outlook Temperature Humidity Wind PlayTennis

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D10 Rain Mild Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

Outlook = Rain and
Attribute A = Temperature.

• Values (Temperature) = {Hot, Mild, Cold }
• | Soutlook=rain |= 5
• Soutlook=rain  [3+, 2-]
• Entropy(Soutlook=rain) = 0.9696
• |Stemperature=hot|= 0

– Stemperature=hot  [0+, 0-]

• |Stemperature=mild|= 3
– Stemperature=mild  [2+, 1-]

• |Stemperature=cold|= 2
– Stemperature=cold  [1+, 1-]

Tejaswini H, Assistant Professor,

Department of Computer Science

• Entropy(Stemperature=hot) = 0 (all negative)

• Entropy(Stemperature=mild)

 = Entropy([2+, 1-])

 = - (2/3) log2 (2/3) - (1/3) log2 (1/3)

 = 0.9164

• Entropy(Stemperature=cold) = 1 (equal)

Tejaswini H, Assistant Professor,
Department of Computer Science

• Gain(Soutlook=rain, Temperature) =

Entropy(Soutlook=rain) –

[(| Stemperature=hot | / | Soutlook=rain |) Entropy(Stemperature=hot) +

 (| Stemperature=mild | / | Soutlook=rain |) Entropy(Stemperature=mild) +

 (| Stemperature=cold | / | Soutlook=rain |) Entropy(Stemperature=cold)]

= 0.9696 - [(0 / 5) * 0 + (3 / 5) * 0.9164 + (2 / 5) * 1]

= 0.01976

Tejaswini H, Assistant Professor,
Department of Computer Science

3.2 To compute Gain(Soutlook=rain, Wind)

Tejaswini H, Assistant Professor,
Department of Computer Science

Records associated with Outlook = Rain and Attribute
A = Wind

Day Outlook Temperature Humidity Wind PlayTennis

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D10 Rain Mild Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

Outlook = Rain and
Attribute A = Wind

• Values (Wind) = {weak, strong}

• | Soutlook=rain |= 5

• Soutlook=rain  [2+, 3-]

• Entropy(Soutlook=rain) = 0.9696

• |Swind=weak|= 3
– Swind=weak  [3+, 0-]

• |Swind=strong|= 2
– Swind=strong  [0+, 2-]

Tejaswini H, Assistant Professor,

Department of Computer Science

• Entropy(Swind=weak) = 0 (all yes)

• Entropy(Swind=strong) = 0 (all no)

Tejaswini H, Assistant Professor,
Department of Computer Science

• Gain(Soutlook=rain, Wind) =

Entropy(Soutlook=rain) –

[(| Swind=weak | / | Soutlook=rain |) Entropy(Swind=weak) +
(| Swind=strong | / | Soutlook=rain |) Entropy(Swind=strong)]

 = 0.9696 - [(3 / 5) * 0 + (2 / 5) * 0]

 = 0.9696

Tejaswini H, Assistant Professor,
Department of Computer Science

3.3 To compute Gain(Soutlook=rain, Humidity)

Tejaswini H, Assistant Professor,
Department of Computer Science

Records associated with Outlook = Rain and Attribute
A = Humidity

Day Outlook Temperature Humidity Wind PlayTennis

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D10 Rain Mild Normal Weak Yes

D14 Rain Mild High Strong No

Tejaswini H, Assistant Professor, Department of Computer Science

Outlook = Rain and
Attribute A = Humidity

• Values (Humidity) = {high, normal}

• | Soutlook=rain |= 5

• Soutlook=rain  [2+, 3-]

• Entropy(Soutlook=rain) = 0.9696

• |Shumidity=high|= 2
– Shumidity=high  [1+, 1-]

• |Shumidity=normal|= 3
– Shumidity=normal  [2+, 1-]

Tejaswini H, Assistant Professor,

Department of Computer Science

• Entropy(Shumidity=high) = 1

• Entropy(Shumidity=normal)

 = Entropy([2+, 1-])

 = - (2/3) log2 (2/3) - (1/3) log2 (1/3)

 = 0.9164

Tejaswini H, Assistant Professor,
Department of Computer Science

• Gain(Soutlook=rain, Humidity) =

Entropy(Soutlook=rain) –

[(| Shumidity=normal | / | Soutlook=rain |) Entropy(Shumidity=normal)
+(| Shumidity=high | / | Soutlook=rain |) Entropy(Shumidity=high)]

 = 0.9696 - [(3 / 5) * 0.9164 + (2 / 5) * 1]

 = 0.01976

Tejaswini H, Assistant Professor,
Department of Computer Science

• So,

• Gain(Soutlook=rain, Wind) = 0.9696

• Gain(Soutlook=rain, Temperature) = 0.01976

• Gain(Soutlook=rain, Humidity) = 0.01976

Tejaswini H, Assistant Professor,
Department of Computer Science

• The attribute Wind has the highest gain. So
attach it as a child node for Outlook=Rain.

• For Outlook= Rain and Wind = Strong all the
records belongs to class label = No, so attach
it as leaf node for Wind = Strong

• For Outlook= Rain and Wind = Weak all the
records belongs to class label = Yes, so attach
it as leaf node for Wind = Weak

Tejaswini H, Assistant Professor,

Department of Computer Science

So, a final decision tree is:

Tejaswini H, Assistant Professor,
Department of Computer Science

• The process of selecting a new attribute and
partitioning the training examples is now
repeated for each nonterminal descendant
node, this time using only the training
examples associated with that node.

• Attributes that have been incorporated higher
in the tree are excluded, so that any given
attribute can appear at most once along any
path through the tree.

Tejaswini H, Assistant Professor,
Department of Computer Science

• This process continues for each new leaf node
until either of two conditions is met:

– every attribute has already been included along
this path through the tree, or

– the training examples associated with this leaf
node all have the same target attribute value (i.e.,
their entropy is zero).

Tejaswini H, Assistant Professor,
Department of Computer Science

3.5 HYPOTHESIS SPACE SEARCH IN
DECISION TREE LEARNING

• As with other inductive learning methods, ID3
can be characterized as searching a space of
hypotheses for one that fits the training
examples.

• The hypothesis space searched by ID3 is the
set of possible decision trees.

Tejaswini H, Assistant Professor,
Department of Computer Science

• ID3 performs a simple-to complex, hill-
climbing search through this hypothesis space,
beginning with the empty tree, then
considering progressively more elaborate
hypotheses in search of a decision tree that
correctly classifies the training data.

Tejaswini H, Assistant Professor,
Department of Computer Science

• The evaluation function that guides this hill-
climbing search is the information gain
measure.

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

Insights into ID3:
capabilities and limitations

• ID3's hypothesis space of all decision trees is a
complete space of finite discrete-valued
functions, relative to the available attributes.
– Because every finite discrete-valued function can

be represented by some decision tree, ID3 avoids
one of the major risks of methods that search
incomplete hypothesis spaces (such as methods
that consider only conjunctive hypotheses): that
the hypothesis space might not contain the target
function.

Tejaswini H, Assistant Professor,
Department of Computer Science

• ID3 maintains only a single current hypothesis as it
searches through the space of decision trees.
– This contrasts, for example, with the earlier version space

candidate-elimination, which maintains the set of all
hypotheses consistent with the available training
examples.

– By determining only a single hypothesis, ID3 loses the
capabilities that follow from explicitly representing all
consistent hypotheses. For example, it does not have the
ability to determine how many alternative decision trees
are consistent with the available training data, or to pose
new instance queries that optimally resolve among these
competing hypotheses.

Tejaswini H, Assistant Professor,
Department of Computer Science

• ID3 in its pure form performs no backtracking in its
search.
– Once it, selects an attribute to test at a particular level in

the tree, it never backtracks to reconsider this choice.
– Therefore, it is susceptible to the usual risks of hill-climbing

search without backtracking: converging to locally optimal
solutions that are not globally optimal.

– In the case of ID3, a locally optimal solution corresponds to
the decision tree it selects along the single search path it
explores.

– However, this locally optimal solution may be less
desirable than trees that would have been encountered
along a different branch of the search.

Tejaswini H, Assistant Professor,
Department of Computer Science

• ID3 uses all training examples at each step in the search to
make statistically based decisions regarding how to refine
its current hypothesis.

• This contrasts with methods that make decisions
incrementally, based on individual training examples (e.g.,
FIND-S or CANDIDATE-ELIMINATION). One advantage of
using statistical properties of all the examples (e.g.,
information gain) is that the resulting search is much less
sensitive to errors in individual training examples.

• ID3 can be easily extended to handle noisy training data by
modifying its termination criterion to accept hypotheses
that imperfectly fit the training data.

Tejaswini H, Assistant Professor,
Department of Computer Science

ISSUES IN DECISION TREE LEARNING

1. Avoiding Overfitting the Data
 REDUCED ERROR PRUNING

 RULE POST-PRUNING

2. Incorporating Continuous-Valued Attributes

3. Alternative Measures for Selecting
Attributes

4. Handling Training Examples with Missing
Attribute Values

5. Handling Attributes with Differing Costs

Tejaswini H, Assistant Professor,
Department of Computer Science

1. Avoiding Overfitting the Data

• The algorithm grows each branch of the tree just
deeply enough to perfectly classify the training
examples.

• While this is sometimes a reasonable strategy, in
fact it can lead to difficulties when
– there is noise in the data,
– or when the number of training examples is too small

to produce a representative sample of the true target
function.

• In either of these cases, this simple algorithm can
produce trees that overfit the training examples.

Tejaswini H, Assistant Professor,
Department of Computer Science

• We will say that a hypothesis overfits the
training examples if some other hypothesis
that fits the training examples less well
actually performs better over the entire
distribution of instances (i.e., including
instances beyond the training set).

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

• Figure 3.6 illustrates the impact of overfitting in a typical
application of decision tree learning.

• In this case, the ID3 algorithm is applied to the task of
learning which medical patients have a form of diabetes.

• The horizontal axis of this plot indicates the total number of
nodes in the decision tree, as the tree is being constructed.

• The vertical axis indicates the accuracy of predictions made
by the tree.

• The solid line shows the accuracy of the decision tree over
the training examples, whereas the broken line shows
accuracy measured over an independent set of test
examples (not included in the training set).

Tejaswini H, Assistant Professor,
Department of Computer Science

• Predictably, the accuracy of the tree over the
training examples increases monotonically as the
tree is grown.

• However, the accuracy measured over the
independent test examples first increases, then
decreases.

• As can be seen, once the tree size exceeds
approximately 25 nodes, further elaboration of
the tree decreases its accuracy over the test
examples despite increasing its accuracy on the
training examples.

Tejaswini H, Assistant Professor,
Department of Computer Science

• How can it be possible for tree h to fit the training
examples better than h', but for it to perform
more poorly over subsequent examples?

• One way this can occur is when the training
examples contain random errors or noise.

• To illustrate, consider the effect of adding the
following positive training example, incorrectly
labeled as negative, to the (otherwise correct)
examples in Table

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

• Given the original error-free data, ID3 produces the
decision tree shown in Figure 3.1.

• However, the addition of this incorrect example will
now cause ID3 to construct a more complex tree.

• In particular, the new example will be sorted into the
second leaf node from the left in the learned tree of
Figure 3.1, along with the previous positive examples
D9 and D11.

• Because the new example is labeled as a negative
example, ID3 will search for further refinements to the
tree below this node.

Tejaswini H, Assistant Professor,
Department of Computer Science

• Of course as long as the new erroneous example differs in
some arbitrary way from the other examples affiliated with
this node, ID3 will succeed in finding a new decision
attribute to separate out this new example from the two
previous positive examples at this tree node.

• The result is that ID3 will output a decision tree (h) that is
more complex than the original tree from Figure 3.1 (h').

• Of course h will fit the collection of training examples
perfectly, whereas the simpler h' will not.

• However, given that the new decision node is simply a
consequence of fitting the noisy training example, we
expect h to outperform h' over subsequent data drawn
from the same instance distribution.

Tejaswini H, Assistant Professor,
Department of Computer Science

• The above example illustrates how random noise in the
training examples can lead to overfitting.

• In fact, overfitting is possible even when the training
data are noise-free, especially when small numbers of
examples are associated with leaf nodes.

• In this case, it is quite possible for coincidental
regularities to occur, in which some attribute happens
to partition the examples very well, despite being
unrelated to the actual target function.

• Whenever such coincidental regularities exist, there is
a risk of overfitting.

Tejaswini H, Assistant Professor,
Department of Computer Science

• There are several approaches to avoiding
overfitting in decision tree learning.These can
be grouped into two classes:

– approaches that stop growing the tree earlier,
before it reaches the point where it perfectly
classifies the training data,

– approaches that allow the tree to overfit the data,
and then post-prune the tree.

Tejaswini H, Assistant Professor,
Department of Computer Science

• a key question is what criterion is to be used to
determine the correct final tree size. Approaches
include:
– Use a separate set of examples, distinct from the training

examples, to evaluate the utility of post-pruning nodes
from the tree.

– Use all the available data for training, but apply a statistical
test to estimate whether expanding (or pruning) a
particular node is likely to produce an improvement
beyond the training set. (Chi-square test)

– Use an explicit measure of the complexity for encoding the
training examples and the decision tree, halting growth of
the tree when this encoding size is minimized. (Minimum
Description Length methoid)

Tejaswini H, Assistant Professor,
Department of Computer Science

• The first of the above approaches is the most common and is
referred to as a training and validation set approach. Two main
variants:

• In this approach, the available data are separated into two sets of
examples: a training set, which is used to form the learned
hypothesis, and a separate validation set, which is used to evaluate
the accuracy of this hypothesis over subsequent data and, in
particular, to evaluate the impact of pruning this hypothesis.

Tejaswini H, Assistant Professor,
Department of Computer Science

• The motivation is this: Even though the learner may be
misled by random errors and coincidental regularities
within the training set, the validation set is unlikely to
exhibit the same random fluctuations.

• Therefore, the validation set can be expected to provide a
safety check against overfitting the spurious characteristics
of the training set.

• Of course, it is important that the validation set be large
enough to itself provide a statistically significant sample of
the instances.

• One common heuristic is to withhold one-third of the
available examples for the validation set, using the other
two-thirds for training.

Tejaswini H, Assistant Professor,
Department of Computer Science

REDUCED ERROR PRUNING

• How exactly might we use a validation set to
prevent overfitting?

• One approach, called reduced-error pruning
(Quinlan 1987), is to consider each of the
decision nodes in the tree to be candidates for
pruning.

• Pruning a decision node consists of removing the
subtree rooted at that node, making it a leaf
node, and assigning it the most common
classification of the training examples affiliated
with that node.

Tejaswini H, Assistant Professor,
Department of Computer Science

• Nodes are removed only if the resulting pruned tree
performs no worse than-the original over the validation set.

• This has the effect that any leaf node added due to
coincidental regularities in the training set is likely to be
pruned because these same coincidences are unlikely to
occur in the validation set.

• Nodes are pruned iteratively, always choosing the node
whose removal most increases the decision tree accuracy
over the validation set.

• Pruning of nodes continues until further pruning is harmful
(i.e., decreases accuracy of the tree over the validation set).

Tejaswini H, Assistant Professor,
Department of Computer Science

RULE POST-PRUNING

• In practice, one quite successful method for finding
high accuracy hypotheses is a technique we shall call
rule post-pruning.

• A variant of this pruning method is used by C4.5
(Quinlan 1993), which is an outgrowth of the original
ID3 algorithm.

Tejaswini H, Assistant Professor,
Department of Computer Science

• Rule post-pruning involves the following steps:

– 1. Infer the decision tree from the training set, growing the
tree until the training data is fit as well as possible and
allowing overfitting to occur.

– 2. Convert the learned tree into an equivalent set of rules
by creating one rule for each path from the root node to a
leaf node.

– 3. Prune (generalize) each rule by removing any
preconditions that result in improving its estimated
accuracy.

– 4. Sort the pruned rules by their estimated accuracy, and
consider them in this sequence when classifying
subsequent instances.

Tejaswini H, Assistant Professor,
Department of Computer Science

• To illustrate, consider again the decision tree
in Figure 3.1.

• In rule postpruning, one rule is generated for
each leaf node in the tree.

• Each attribute test along the path from the
root to the leaf becomes a rule antecedent
(precondition)

• and the classification at the leaf node
becomes the rule consequent (postcondition).

Tejaswini H, Assistant Professor,
Department of Computer Science

• For example, the leftmost path of the tree in
Figure 3.1 is translated into the rule

Tejaswini H, Assistant Professor,
Department of Computer Science

• Next, each such rule is pruned by removing any
antecedent, or precondition, whose removal does not
worsen its estimated accuracy.

• Given the above rule, for example, rule post-pruning
would consider removing the preconditions (Outlook =
Sunny) and (Humidity = High).

• It would select whichever of these pruning steps
produced the greatest improvement in estimated rule
accuracy, then consider pruning the second
precondition as a further pruning step.

• No pruning step is performed if it reduces the
estimated rule accuracy

Tejaswini H, Assistant Professor,
Department of Computer Science

Why convert the decision tree to rules
before pruning?

• There are three main advantages.
• Converting to rules allows distinguishing among the different

contexts in which a decision node is used. Because each distinct
path through the decision tree node produces a distinct rule, the
pruning decision regarding that attribute test can be made
differently for each path. In contrast, if the tree itself were pruned,
the only two choices would be to remove the decision node
completely, or to retain it in its original form.

• Converting to rules removes the distinction between attribute tests
that occur near the root of the tree and those that occur near the
leaves. Thus, we avoid messy bookkeeping issues such as how to
reorganize the tree if the root node is pruned while retaining part of
the subtree below this test.

• Converting to rules improves readability. Rules are often easier for
to understand.

Tejaswini H, Assistant Professor,
Department of Computer Science

2. Incorporating Continuous-Valued
Attributes

• Our initial definition of ID3 is restricted to
attributes that take on a discrete set of values.

• First, the target attribute whose value is
predicted by the learned tree must be discrete
valued.

• Second, the attributes tested in the decision
nodes of the tree must also be discrete valued.

• This second restriction can easily be removed so
that continuous-valued decision attributes can be
incorporated into the learned tree.

Tejaswini H, Assistant Professor,
Department of Computer Science

• This can be accomplished by dynamically defining
new discrete-valued attributes that partition the
continuous attribute value into a discrete set of
intervals.

• In particular, for an attribute A that is continuous-
valued, the algorithm can dynamically create a
new boolean attribute Ac, that is true if A < c and
false otherwise.

• The only question is how to select the best value
for the threshold c.

Tejaswini H, Assistant Professor,

Department of Computer Science

3. Alternative Measures for
Selecting Attributes

• Attribute Date has so many possible values that it
is bound to separate the training examples into
very small subsets.

• Because of this, it will have a very high
information gain relative to the training
examples, despite being a very poor predictor of
the target function over unseen instances.

• One way to avoid this difficulty is to select
decision attributes based on some measure other
than information gain.

Tejaswini H, Assistant Professor,
Department of Computer Science

• One alternative measure that has been used
successfully is the gain ratio.

• The gain ratio measure penalizes attributes
such as Date by incorporating a term, called
split information, that is sensitive to how
broadly and uniformly the attribute splits the
data:

Tejaswini H, Assistant Professor,
Department of Computer Science

Tejaswini H, Assistant Professor,
Department of Computer Science

where S1 through Sc, are the c subsets of examples resulting
from partitioning S by the c-valued attribute A.

• The Gain Ratio measure is defined in terms of
the earlier Gain measure, as well as this Split
information, as follows

Tejaswini H, Assistant Professor,
Department of Computer Science

4. Handling Training Examples with
Missing Attribute Values

• In certain cases, the available data may be
missing values for some attributes.

• For example, in a medical domain in which we
wish to predict patient outcome based on various
laboratory tests, it may be that the lab test Blood-
Test-Result is available only for a subset of the
patients.

• In such cases, it is common to estimate the
missing attribute value based on other examples
for which this attribute has a known value.

Tejaswini H, Assistant Professor,
Department of Computer Science

• Consider the situation in which Gain(S, A) is to
be calculated at node n in the decision tree to
evaluate whether the attribute A is the best
attribute to test at this decision node.

• Suppose that (x, c(x)) is one of the training
examples in S and that the value A(x) is
unknown.

Tejaswini H, Assistant Professor,
Department of Computer Science

• One strategy for dealing with the missing
attribute value is to assign it the value that is
most common among training examples at
node n.

• Alternatively, we might assign it the most
common value among examples at node n
that have the classification c(x)

Tejaswini H, Assistant Professor,
Department of Computer Science

5. Handling Attributes with
Differing Costs

• In some learning tasks the instance attributes may have
associated costs.

• For example, in learning to classify medical diseases we
might describe patients in terms of attributes such as
Temperature, BiopsyResult, Pulse, BloodTestResults,
etc.

• These attributes vary significantly in their costs, both in
terms of monetary cost and cost to patient comfort.

• In such tasks, we would prefer decision trees that use
low-cost attributes where possible, relying on high-cost
attributes only when needed to produce reliable
classifications.

Tejaswini H, Assistant Professor,
Department of Computer Science

• ID3 can be modified to take into account
attribute costs by introducing a cost term into
the attribute selection measure.

• For example, we might divide the Gain by the
cost of the attribute, so that lower-cost
attributes would be preferred.

Tejaswini H, Assistant Professor,
Department of Computer Science

INDUCTIVE BIAS in
DECISION TREE LEARNING

• inductive bias:

– the set of assumptions that, together with the
training data, deductively justify the classifications
assigned by the learner to future instances.

Tejaswini H, Assistant Professor,
Department of Computer Science

• For a given collection of training examples,
there are many decision trees consistent with
these examples.

• ID3 search strategy selects

– (a) in favor of shorter trees over longer ones, and

– (b)trees that place the attributes with highest
information gain closest to the root.

Tejaswini H, Assistant Professor,
Department of Computer Science

• Approximate inductive bias of ID3:

– Shorter trees are preferred over larger trees.

Tejaswini H, Assistant Professor,
Department of Computer Science

• A closer approximation to the inductive bias
of ID3:

– Shorter trees are preferred over longer trees.
Trees that place high information gain attributes
close to the root are preferred over those that do
not.

Tejaswini H, Assistant Professor,
Department of Computer Science

Restriction Biases and
Preference Biases:

ID3 v/s Candidate-Elimination

Tejaswini H, Assistant Professor,
Department of Computer Science

ID3

• ID3 searches a complete hypothesis space.

• It searches incompletely through this space,
from simple to complex hypotheses, until its
termination condition is met.

• Its inductive bias is solely a consequence of
the ordering of hypotheses by its search
strategy.

• Its hypothesis space introduces no additional
bias.

Tejaswini H, Assistant Professor,
Department of Computer Science

Candidate-Elimination

• The version space CANDIDATE-ELIMINATION
algorithm searches an incomplete hypothesis
space.

• It searches this space completely, finding every
hypothesis consistent with the training data.

• Its inductive bias is solely a consequence of the
expressive power of its hypothesis
representation.

• Its search strategy introduces no additional bias.

Tejaswini H, Assistant Professor,
Department of Computer Science

• In brief, the inductive bias of ID3 follows from
its search strategy,

• whereas the inductive bias of the C-E follows
from the definition of its search space.

Tejaswini H, Assistant Professor,
Department of Computer Science

• The inductive bias of ID3 is thus a preference
for certain hypotheses over others (e.g., for
shorter hypotheses), with no hard restriction
on the hypotheses that can be eventually
enumerated.

• This form of bias is typically called a
preference bias (or, alternatively, a search
bias).

Tejaswini H, Assistant Professor,
Department of Computer Science

• In contrast, the bias of the C-E is in the form of
a categorical restriction on the set of
hypotheses considered.

• This form of bias is typically called a
restriction bias (or, alternatively, a language
bias).

Tejaswini H, Assistant Professor,
Department of Computer Science

• Typically, a preference bias is more desirable than
a restriction bias, because it allows the learner to
work within a complete hypothesis space that is
assured to contain the unknown target function.

• In contrast, a restriction bias that strictly limits
the set of potential hypotheses is generally less
desirable, because it introduces the possibility of
excluding the unknown target function altogether

Tejaswini H, Assistant Professor,

Department of Computer Science

Why Prefer Short Hypotheses?

Tejaswini H, Assistant Professor,
Department of Computer Science

• Occam's razor: Prefer the simplest hypothesis
that fits the data.

Tejaswini H, Assistant Professor,
Department of Computer Science

